Abstract Waves


Take a look at some of our newest papers, and please reach out to us if you have any questions!

Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete SCI

Persons living with incomplete spinal cord injuries (SCI) often struggle to regain independent walking due to deficits in walking mechanics. They often dedicate many weeks of gait training before benefits to emerge, with additional training needed for benefits to persist. Recent studies in humans with SCI found that daily bouts of breathing low oxygen (acute intermittent hypoxia, AIH) prior to locomotor training elicited persistent (weeks) improvement in overground walking speed and endurance. AIH-induced improvements in overground walking may result from changes in control strategies that also enhance intralimb coordination; however, this possibility remains untested. Here, we examined the extent to which daily AIH combined with walking practice (AIH + WALK) improved overground walking performance and intralimb motor coordination in persons with chronic, incomplete SCI.

Daily acute intermittent hypoxia to improve walking function in persons with subacute spinal cord injury: a randomized clinical trial study protocol

Restoring community walking remains a highly valued goal for persons recovering from traumatic incomplete spinal cord injury (SCI). Recently, studies report that brief episodes of low-oxygen breathing (acute intermittent hypoxia, AIH) may serve as an effective plasticity-inducing primer that enhances the effects of walking therapy in persons with chronic (> 1 year) SCI. More persistent walking recovery may occur following repetitive (weeks) AIH treatment involving persons with more acute SCI, but this possibility remains unknown. Here we present our clinical trial protocol, designed to examine the distinct influences of repetitive AIH, with and without walking practice, on walking recovery in persons with sub-acute SCI (< 12 months) SCI. Our overarching hypothesis is that daily exposure (10 sessions, 2 weeks) to AIH will enhance walking recovery in ambulatory and non-ambulatory persons with subacute (< 12 months) SCI, presumably by harnessing endogenous mechanisms of plasticity that occur soon after injury.

Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia

Paired corticospinal-motoneuronal stimulation (PCMS) elicits spinal synaptic plasticity in humans with chronic incomplete cervical spinal cord injury (SCI). Here, we examined whether PCMS-induced plasticity could be potentiated by acute intermittent hypoxia (AIH), a treatment also known to induce spinal synaptic plasticity in humans with chronic incomplete cervical SCI. During PCMS, we used 180 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation over the hand representation of the primary motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle ~1-2 ms before the arrival of antidromic potentials elicited in motoneurons by electrical stimulation of the ulnar nerve. During AIH, participants were exposed to brief alternating episodes of hypoxic inspired gas (1 min episodes of 9% O2) and room air (1 min episodes of 20.9% O2). We examined corticospinal function by measuring motor evoked potentials (MEPs) elicited by cortical and subcortical stimulation of corticospinal axons and voluntary motor output in the FDI muscle before and after 30 min of PCMS combined with AIH (PCMS+AIH) or sham AIH (PCMS+sham-AIH). The amplitude of MEPs evoked by magnetic and electrical stimulation increased after both protocols, but most after PCMS+AIH, consistent with the hypothesis that their combined effects arise from spinal plasticity. Both protocols increased electromyographic activity in the FDI muscle to a similar extent. Thus, PCMS effects on spinal synapses of hand motoneurons can be potentiated by AIH. The possibility of different thresholds for physiological vs behavioral gains needs to be considered during combinatorial treatments.

An automated pressure-swing absorption system to administer low oxygen therapy for persons with spinal cord injury

Mild episodes of breathing low oxygen (O2) (i.e., acute intermittent hypoxia, AIH) elicits rapid mechanisms of neural plasticity that enhance respiratory and non-respiratory motor function after spinal cord injury (SCI). Despite promising outcomes in humans and rodents with SCI, the translational potential of AIH as a clinical therapy remains dependent on a safer and more reliable air delivery system. The purpose of this study is to investigate the performance of a novel AIH delivery system to overcome inconsistencies in human AIH protocols using a hand-operated (manual) delivery system. Specifically, we characterized system performance of AIH delivery in terms of flow rate, O2 concentration, dose timing, and air temperature. Our data show that a novel 'automated' delivery system: i) produces reliable AIH with a goodness-of-fit at 98.1% of 'ideal'; ii) eliminates dose timing errors via programmable solenoid switches; iii) reduces fluctuations in O2 to less than 0.01%; and iv) delivers 62.7% more air flow than the 'manual' delivery method. Automated physiological recordings, threshold detection, and visual feedback of the participant's blood O2 saturation, heart rate, and blood pressure ensures real-time user safety. In summary, the 'automated' system outperformed the 'manual' delivery method in terms of accuracy, reliability, and safety. The 'automated' system offers several design features that move the technology closer to a medically approved treatment for clinical and home use.